If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5n^2+42n-80=0
a = 5; b = 42; c = -80;
Δ = b2-4ac
Δ = 422-4·5·(-80)
Δ = 3364
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3364}=58$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-58}{2*5}=\frac{-100}{10} =-10 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+58}{2*5}=\frac{16}{10} =1+3/5 $
| Y=(2x-5)(4x+7) | | 1.4x=1.2x+12.48 | | X+4y=2= | | 20=4gg= | | 180=(3x+9)+(2x-4) | | 4-6x=66 | | 39=x/4+17 | | 3x+2=-44 | | 0.2x-153.4=90 | | -18=-2b | | 13=y6 | | t5=10 | | 0.86−0.12−0.09=x | | y=315000(1.02)^5 | | 6x+19=53 | | 1/48/b=28 | | 7-(-2x)/3x=8 | | 5m-(23m-7)=-5 | | y÷3-8=4 | | 11x-5=10x+2 | | x-2=x+4=x+3=x+5=x+4 | | 1.75b=6 | | -21/3+5b=8 | | -10.2+x/8.7=-10.096 | | 4x-5=15° | | 2(4-x)-5=78 | | 0.9=15/6x | | 35=(9x-17) | | 125n+30n=930 | | 125n+30n=3 | | (9x-17)=35 | | 12.64=r/10.3+11 |